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Lie transformation groups are given which leave the three-dimensional linear 
diffusion equation invariant, with and without chemical reactions. We show how 
similarity solutions and conserved currents can be obtained with the help of 
these groups. We apply these methods to nonlinear three-dimensional diffusion 
equations which can be exactly linearized by nonlinear transformations. 

1. I N T R O D U C T I O N  

Lie t r ans fo rma t ion  g roups  which  leave invar ian t  the o n e - d i m e n s i o n a l  
d i f fus ion equa t ion  Ou/Ot = 0 2 u / O x  2 have been  s tud ied  by several  au thors  
(B lumen  and  Cole ,  1974; Ha r r i son  and  Es te rb rook ,  1971; Steeb,  1978a, b;  
S te inberg  and  Wolf ,  1981 ; Steeb and  S t r ampp ,  1982). Con t inuous  symmet ry  
groups  o f  given field equa t ions  are he lpfu l  for  ob ta in ing  s imi lar i ty  so lu t ions  
(B lumen  a n d  Cole,  1974) and  conse rved  currents  (S te inberg  and  Wolf ,  
1981; Steeb and  S t r ampp ,  1982). 

In  the  p resen t  p a p e r  we give Lie t r ans fo rma t ion  g roups  which  leave 
invar ian t  the  t h r ee -d imens iona l  diffusion equa t ion  

OU O2U 02U O2U 

Ot = Ox ---5 + Oy - - 5  + Oz 2 ( 1 ) 

The dif fus ion cons tan t  D, which  is a s sumed  to be cons tant ,  is i nc luded  in 
the  t ime t acco rd ing  to the  t r ans fo rma t ion  t-> t~ D. Moreover ,  we show how 
the knowledge  o f  the symmet ry  groups  can be used  for  ob ta in ing  s imi la r i ty  
so lu t ions  and  conserved  currents .  Since a class o f  non l inea r  di f fus ion 
equa t ions  can be t r a n s f o r m e d  via a non l inea r  t r ans fo rma t ion  into the  l inear  
diffusion equa t ion  we are ab le  to cons t ruc t  s imi lar i ty  so lu t ions  and  con- 
served currents  of  this class o f  non l inea r  diffusions.  This class o f  non l inea r  

~Rand Afrikaans University, Department of Physics, P.O. Box 524, Johannesburg 2000, Repub- 
lic of South Africa. 

237 
0020-7748/85/0300-0237504.50/0 �9 1985 Plenum Publishing Corporation 



238 Steeb 

diffusion equations has been studied in one dimension by several authors. 
With the help of an example we demonstrate this approach. 

In Section 2 we cor~sider for the sake of completeness the one- 
dimensional diffusion equation. 

In Section 3 the Lie transformation groups and their infinitesimal 
getierators are given for the three-dimensional diffusion equation which 
leave the diffusion equation invariant. Moreover, we study three- 

d imens iona l  diffusion equations where chemical reactions are included. 
The Lie algebra which is associated with the infinitesimal generators 

is investigated in Section 4, 
Similarity solutions are derived in Section 5. 
Section 6 is devoted to the diffusion equation and Lie-Bficklund trans- 

formations. Here we use the jet bundle formalism. This approach is briefly 
described, 

Conserved currents of  the diffusion equation are studied in Section 7. 
Finally, we consider in Section 8 a class of nonlinear diffusion equations 

which can be linearized via a noniinear transformation. 

2. ONE-DIMENSIONAL DIFFUSION EQUATION 

We briefly describe the one-dimensional diffusion equation and its 
symmetry groups. We do not give the symmetry groups, but we give the 
infinitesimal generators (vector fields). With the help of a Lie series we can 
obtain the symmetry group from the infinitesimal generator. The one- 
dimensional diffusion equation Ou/Ot = O:u/Ox 2 is invariant under the fol- 
lowing infinitesimal generators: 

O O 
X = - -  T = ~  

Ox' Ot 

0 O O 
V =  - -  S = x ~ + 2 t - -  

Uou'  Ox 3t 

O xu O 
G = t  

3x 2 Ou 

(2) 

0 t 2 0  ( x 2 + t ~ u  0 P =  x t - - +  

For the definition of the invariance of  a partial differential equation we 
refer to Bluman and Cole (1974). In Section 6 we extend this definition. 
The vector fields given above form a basis of a non-Abelian Lie algebra. 
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The meaning of  the generators is as follows: X represents translation in x 
and T translation in t. V represents the field scale change and S the scale 
change with respect to x and t. G represents the Galilean transformation 
and P is associated with the projective transformation. The generators given 
above lead via the mapping  (Lie series) 

(x, t, u ) ~  exp(eK)(x,  t, u) (3) 

to the Lie transformation groups, e is the group parameter  and K the 
generator. Lie-BScklund transformation groups will be studied in the three- 
dimensional case. 

A vector field which leaves the diffusion equation invariant and leads 
to a Lie transformation group has been omitted so far, namely, U = o/Ou. 
This vector field leads to an infinite hierachy of infinitesimal generators 
which leave the diffusion equation invariant. This is due to the fact that the 
commutator  of  two generators of  symmetry groups is again a generator of  
a symmetry group. For example,  

• 
\ 4 2 /Ou 

(4) 

The right-hand side is a generator of  a symmetry group. Taking the commu- 
tator of  the vector field given by the right-hand side of  equation (4) and P 
we find a further vector field for which the diffusion equation is invariant. 
The procedure can be carried out up to infinity. We notice that f (x ,  t) = 
- ( x 2 / 4 +  t /2) is a solution to the diffusion equation. In general, we can 
easily formulate the following theorem. 

Theorem. Let f (x ,  t)a/Ou be a vector field. Assume that f satisfies the 
diffusion equation. Then the diffusion equation is invariant under the vector 
field f (x ,  t)O/Ou. 

We mention that the converse is also true. The proof  of  the theorem 
will be given in Section 6 within the jet bundle formalism. The so-called 
diffusion polynomials [called heat polynomials in the literature (Widder, 
1975)] can be found as follows. Consider the symmetry generators G and 
U. Then the commutators 

[G, u] 

[G,[G, U]] (5) 
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and so on yield the diffusion polynomials. By a straightforward calculation 
we find 

x 0 
[G, U] =~" 0--u 

( t + x 2 ~  0 (6) 
[G, [G, U]]= \2 4/O-u 

[G, [G, [o, u]]] = \ 4 8 / au 

Thus the first few polynomials are given by 

x t x 2 3 tx  x 3 
p , ( x ,  t )=-~,  pz(X, t ) =  ~+~-, p3(x,  t ) = - - + - - 4  8 (7) 

As described above the diffusion polynomials are solutions to the diffusion 
equation. 

3. T H R E E - D I M E N S I O N A L  CASE 

Consider now the three-dimensional case. The three-dimensional 
diffusion equation given by equation (1) is invariant under the following 
vector fields: 

o o o a 
x = - -  Y -  z = - -  T = - -  

Ox" Oy' az '  ot  

a a c~ a a 
V =  Uau , -  S = x - - +  ~yy+Z--+2t--az at 

a x u  a o y u  a a zu a 
GI = t . . . . .  G2 = t G3 = t . . . . .  (8) 

ax 2 ou '  oy 2 ou '  az 2 ou 

a o 
Rl2 = x- -~y-  Y ~ x ,  

a a a a 
- - - - Z ~ y ~  R 3 1 = z - - - x  - R23 = Y oz Ox az  

o a a ~2o [x~ y 2  z2_3t~ a 
z t - - +  Ou P =  X t ~ x +  Yt-~y+ Oz i - ~ t - - k - ~ - r - ~ - r - ~ T - - ~ J  U - -  

With help of the Lie series 

(x,  y, z, t, u ) ~ e x p ( e K ) ( x ,  y, z, t, u )  (9) 

where K is an infinitesimal generator and e the group parameter, we obtain 
the corresponding transformation group. By a straightforward calculation 
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we find 

X :  x ~ x + e ,  y ~ y ,  

Y :  x ~ x ,  y ~ y + e ,  

Z :  x ~  x, y ~  y, 

T :  x ~ x, y o y,  

V:  x - ~  x, y ~ y, z - ~  

S:  x ~ e ~ x ,  y ~ e ~ x ,  z -~  

GI:  x ~ x + e t ,  y ~ y ,  z ~  

G2: x ~ x,  y - ~  y + et, z ~ 

G 3:  x ~ x, y ~ y, z -0 

C) R~2:  ~ \ - s i n e  cos y ' 

Rz3: (zY) ~(c~ cosSin : )  (Y)'  

( ; ) ~ (  cos e sin : )  ( z )  
R31: k-s in  e cos x ' 

x y 
P: X ~ l _ e t ,  Y ~ l - e t '  z ~ 

z ~ z ,  t ~ t ,  u - ~ u  

z ~ z ,  t ~ t ,  u ~ u  

z ~ z + e ,  t ~ t ,  u ~ u  

z ~ z ,  t ~ t + e ,  u ~ u  

Z, t ~ t, U ---> e ~ u  

eE2,  t --> e 2 e t ,  u ~ u 

z ,  t --) t~ 12 -.~ u e - t e 2 / 4 - x e / 2  

z, t ~ t~ ld -4. U e - t e 2 / 4 - y e / 2  

z + e t ,  t ~ t ,  u ~ u e  - t~2/4-~/2  (10) 

~ - ~  Z, U ~ U 

1,1-'-> 

z t 

1 - e t '  1 - e t  

( 1 - e t )  3 / 2 e x p [ _ - 4 \ l - e t  1 - e t  1 - e t / ]  

X-'-> X~ U ~ U 

y - ~  y, u -~  u 

where D is the diffusion constant which is assumed to be constant, and k 
the rate constant of the chemical reaction. A is the three-dimensional Laplace 

O u / O t = D A u - k u  (11) 

A further vector field which leaves three-dimensional diffusion equation 
invariant is given by U. We have described the properties of this vector 
field in Section 2. We can easily extend these properties to the three- 
dimensional case. In particular, this means that we find solutions to the 
three-dimensional diffusion equation via the commutators [G~, U] ( i=  
1, 2, 3), [P, U], [Gi, [Gi, U]], and so on. 

Let us now study two diffusion equations which include chemical 
reactions. The first equation under consideration is given by (Crank, 1975) 
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k 

operator. The chemical reaction under consideration is given by U ~ S ,  
where u denotes the concentration of the species U. The species U decays 
in the species $. We mention that equation (11) can also be used for 
describing the conduction of heat along a wire which loses heat from its 
surface at a rate proportional  to its temperature. We also have the same 
equation when the species U undergoes radioactive decay. 

The second equation under consideration is given by 

Ou/Ot = D A u  + kso e x p ( - k t )  (12) 

k 
where the chemical reaction is of  the form S ~ U. So denotes the concentra- 
tion of the species S at time t = 0 and we assume that the concentration of 
U is equal to 0 at time t = 0. Moreover we assume that the species S does 
not diffuse through the medium, i.e., the diffusion constant for this species 
is equal to zero. I f  we assume that the concentration of U is equal to Uo at 
time t = 0, then we must replace So by So+ Uo. 

We may well ask under which transformation groups the partial differ- 
ential equations given above are invariant. 

Consider now the patial differential equation (1 1) and the vector fields 
given by equation (8). We find that the vector fields 

{X, Y, Z, T, V, G1, G2, G3, R12, R23, R32} (13) 

leave the diffusion equation (11) invariant. Equation (1) is no longer 
invariant under {S, P}, but the equation (11) 

and 

S* = xO/ox  + yO/Oy + zO/Oz + 2tO/O t - 2ktuO/Ou (14) 

P* = xtO/Ox + ytO/Oy + ztO/Oz + t20/O t -- t2kuO/Ou 

- ( x2 /4  + y2 /4  + z2/4  + 3 t / 2 )  uO/d u (15) 

respectively. 
The diffusion equation (1) can be transformed with the help of  the 

transformation 

u(x,  y, z, t) = u'(x,  y, z, t) e x p ( - k t )  (16) 

into the diffusion equation 

Ou'/Ot = D A u '  (17) 

With the help of  this transformation we can also obtain the vector fields 
S* and P* from the vector fields S and P. 
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Consider now the diffusion equation (12). The partial differential 
equation is invariant under the vector fields 

{X, Y, Z, R12, R23, R31} (18) 

Moreover, equation (12) is invariant under 

o/at + k exp(-k t )O/au 

[u + so exp(-kt)]O/Ou 

xa/ ox + ya/ oy + zO/ oz + 2ta/ at + 2ksot e x p ( - k t  )o/ Ou 

tO/Ox- x{[u + So exp(-kt)]/Z}O/Ou 
(19) 

tO/ Oy - y { [ u  + So e x p ( - k t  ) J/ 2}O/ Ou 

tO/Oz- z{[u + So exp(-k t )] /2}o/ou  

xtO/ Ox + yto/ ov + ztO/ oz + t2o/ ot + kt 2 exp(-kt)0/0u 

- ( x2 /4+y2/4+ z2/4 + 3 t/2)[u + So exp(-kt)]O/Ou 

The diffusion equation (12) can be transformed with the help of the transfor- 
mation 

u(x, y, z, t) = u'(x, y, z, t) -So  exp(-kt)  (20) 

into the diffusion equation Ou'/Ot =- DAu'.  

4. THE LIE ALGEBRA OF THE SYMMETRY GENERATORS 

Consider now the properties of the vector fields given by equation (8). 
By a straightforward calculation we find 

[X, P] = G,, [ Y, P] = G2, [Z, P] ~ -  G 3 

IV, P]  

[Gt, P] 

[R12, P] 

[S, G,] 

[G1, R12] 

[G~, R,2] 

[G~, R i d  

[G1, Od 

[S, R id  

[v,  O,]  

= 0, IS, P]  = 2 P  

=[(32, P]  = [G3, P ] = 0  

= [R23, P] = [R31, P] = 0 

= Ol, [S, G2] : 02, [S, 03] = (]~3 

= (32, [Ol ,  R23] = O, [O, ,  R31] = 03 

= -G1, [Q ,  RM= Q ,  [Q ,  RM--0 

= 0, [(}3, R23] = - G 2 ,  [G3, R3l] = GI 

= [o l ,  Gd = [G~, G ~ ]  = 0 

= IS, R23 ] = [S, R31 ] =- 0 

= [ K  G2] : IV, G3] = 0  

(21) 
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Consequently, Abelian Lie algebras are given by 

{X, Y,Z, T}, {Gx, G2, G3, P}, {V, GI, G2, G3} 

{V, P}, {R,2, P}, {R23, P}, {R3,, P} 

{R,2, S}, {R23 , S}, {R3,, S} 

(22) 

5. S IMILARITY S O L U T I O N S  

With the help of the symmetry groups given by equation (9) we are 
able to find so-called similarity solutions of  the diffusion equation. This 
means, we can derive a so-called similarity variable, say, 7, which depends 
on the time coordinate t and the space coordinates x, y, z. With the help 
of  this similarity variable ~ we are now able to reduce the partial differential 
equation to an ordinary differential equation, where the independent vari- 
able of  this ordinary differential equation is the similarity variable 7. In the 
following we demonstrate the approach for two particular cases. 

Consider the infinitesimal generators 

{R,2, Z, T+ aV} (23) 

where a ~ R. The vector fields Rl2, Z, and T+ aV form a basis of  an Abelian 
Lie algebra. We mention that we need three vector fields for obtaining an 
ordinary differential equation. With each vector field we can eliminate one 
independent variable. In the present case there are four independent vari- 
ables. For finding the similarity variable and the ordinary differential 
equation which can be derived from the infinitesimal generators we need 
the corresponding transformation groups and the composit ion of  these 
transformation groups. 

According to the infinitesimal generators R12, Z, and T+ aV we find 

( x , ) = ( c o s e ,  - s i ne , ) (Xo l ,  z,=zo, tl=to, u~=uo 
Yt \ s i n  et cos e~ / \Yol 

x2 = xl, yz=yb z2--- ZI"~E2, t2--- q, U2 = Ul (24) 

X3 = X2, Y3 ---- Y2, Z3 : Z2, t3 = t2 + 63, U 3 = U2 exp(ae3) 

The composition of these transformation groups gives the three-parameter  
transformation group 

( y l )  _ (cos  el - s i n  e l )  ( ~ )  (25a) 
- \ s i n  el cos e~ / 

z3 = Zo+ e2 (25b) 

t3 = to+ e3 (25c) 

u3 -- Uo exp(ae3) (25d) 
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In the fol lowing we put  x 3 = X~ Y3 = Y, Z3 = Z, t3 = t, and 1-13 = U. We choose  
Xo = 7  (~7 = similari ty var iable) ,  yo = Zo = to = 0. Then the above  equat ions  
can be solved with respect  to e,, e2, e3, and  ~ and  we find 

E l =  arctan ( Y ) ,  e2=z ,  e 3 = t  (26) 

The  similari ty var iable  ~7 takes the fo rm 

~1 = (x2 + y2) ~/2 (27) 

Taking  into account  the equat ion  (25d) we obta in  the ansatz 

u(x,  y, z, t) = f i (n)  exp (a t )  (28) 

Inser t ing this ansatz  into the diffusion equat ion  we find an ord inary  equa t ion  
where  the independen t  var iable  is given by ~7 and  the dependen t  var iable  
is given by ft. By a s t ra ight forward  calculat ion we obtain  the fol lowing 
ord inary  differential equat ion:  

d2u 1 d~ 
d r / -5+-  ' 7 r/ a r / =  aR (29) 

The result ing ord inary  differential equat ion  is o f  Bessel 's  type and can be 
solved with the help o f  Bessel functions.  

6. L I E - B . ~ C K L U N D  T R A N S F O R M A T I O N  G R O U P S  

For  fur ther  investigations,  in par t icular  for  obta ining Lie-B~icklund 
t r ans fo rmat ion  groups which leave the diffusion equat ion  invariant ,  we 
consider  our  part ial  differential equat ion  within the jet  bundle  fo rmal i sm 
(Johnson,  1962; Olver,  1979; Steeb et al., 1982). Since most  physicists  are 
not  famil iar  with this fo rmal i sm we give a short  review. 

First o f  all let us in t roduce  the notat ion.  A triple (N,  ,r, M )  is called 
a fibered mani fo ld  if M and N are differentiable mani fo lds  and ~" : N--> M 
is a surjective submers ion .  The so-called base  mani fo ld  M represents  the 
independen t  variables.  In most  cases in physics M = •4 or an open  subset  
o f  R 4. The mani fo ld  N represents  the dependen t  variables  (the fields) and 
the independen t  variables.  In  most  cases in physics N will be an open  
subset  o f  the Eucl id ian  space  R a x R  n. N o w  let d im M = m  and dim N =  
n + m and let (xi, uj) (1 - i -  m, 1 <-j-< n) denote  the coord ina te  funct ion 
defined by  a f b e r  chart.  Sections o f  N are defined as smooth  maps  s : M -> N 
such that  ~r o s = 1 M, where  1 M is the identi ty m a p  of  M. We call the funct ions  
(xi, uj) the fiber coordinates  on N. The  r-jet bundle  J r ( N )  is given by the 
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equivalence classes o f  sections o f  N having rth order  contact.  The coordinate  
functions on J r ( N )  are denoted by (x~, % %, %,~2 . . . .  , uj~d2...~,) , where 

i, i b . . . , i r e { 1 , . . . , m } ,  j e { 1  . . . .  ,n} and l<-il<-i2...<-ir<-m.u~h...~,, 

The quanti ty uo~..4, corresponds  to the partial derivative o f  u s with respect 
to % . . .  xip. T h e  infinite jet bundle  is denoted  by J ( N ) .  Within the jet bundle  
formalism a system of  partial differential equat ions o f  order  r is defined to 
be a submani fo ld  o f  J ' ( N ) .  Consider  a system of  partial differential 
equations o f  order  r 

F~(x,, % au/ax,,..., o 'u j /axhax ,2 . . ,  ax,,) = 0 (u = 1 , . . . ,  q) (30) 

Within the jet bundle  formalism we consider  the submanifo ld  

F,,(x,, % %, .  . . , u, , . . . , , )=0 (31) 

and the contact  forms 

Oj = du~ - ~ % d x  i 
i = 1  

(32) 

Ojil...i, = dUjir..ir_ ' - ~ Uji,...i,.k dXk 
k = l  

Consider  now the vector field D~ defined on J ( N )  by 

a " a " - '  a 
+ j ~  % - - + "  " "+  j~ l  ~ u j , ~ . . . ~ , - - + .  �9 �9 (33) 

Di= ~ 1 OUj "= i ...... i r = l  aUjil,...,ir 

The summat ion  on the r ight-hand side is restricted to 1 -< i~ -< i2 - �9 �9 �9 -< i, -< 
m. D~ is sometimes called the operator  o f  total differentiation. Together  
with equat ion (31) we consider  all differential consequences  D~F~= 
0 , . . . ,  D~,Di 2 . . .  F~ = 0 .  Let fi  = dx~ ^ dx2^  �9 �9 �9 ̂ dxr, be the volume form on 
M. Xr, will play the role o f  the time coordinate.  

Definition. The ( m -  1) form 

defined on J ( N )  is called a conservat ion law of  equat ion (30) i f ( j s )* (dco )  = 0 
whenever  s : M ~ N is a solution to equat ion (30). j s  is the  jet extension o f  
s up to infinite order. O/Oxk .lf~ denotes the contraction.  

Another  possibility for  defining conserved currents is: The (m - 1 ) form 
co given above is called a conservat ion law if dco e J, where J is the differential 



Continuous Symmetries of Three-Dimensional Diffusion Equations 247 

ideal generated by F,,, Dy,,,  . . . .  , and the contact forms. We mention that 
the first definition is the more general one. 

For deriving conserved currents we consider the vector fields 

Z= ~, a,a/ax,+ ~ bjalauj (35) 
i=1 j = l  

where a~ and bj depend upon (xi, uj, uji,...). The corresponding vertical 
vector field is given by 

Zv  = ~ (b  j -  ~ aiuii~ 0"-~- (36) 
j=l ~=1 " / Ouj 

We denote by Zv the prolongation of the vector field Zv  up to infinite order. 

Definition. The system of partial differential equations (30) which is 
described within the jet bundle formalism by equation (31) and the contact 
forms is called invariant under  the vector field Zv  if 

L~vF,, ~ 0 (37) 

where ~ stands for the restriction to solutions to equation (30). 

Again we can give a definition which is not so general, but frequently 
used. Here the system of partial differential equations is called invariant if 
L2F,  c J, L20j ~ J , . . . ,  where J is the differential ideal generated by F~, 
D y ,  and the contact forms. 

Assume that the vector field Zv  is integrable to the corresponding 
group action u ~ exp(eZv)u. Then, owing to invariance, a solution s : M ~ N 
is carried into a new solution exp(eZv)s. 

Theorem. Assume that the system of partial differential equations (30) 
is invariant under the vector field Zv. Let to be a conservation law of equation 
(30). Then L2vto is also a conservation law of equation (30). 

The proof  is by straightforward calculation�9 (cf. also Steeb and Strampp, 
1982). 

Let us now prove the theorem given in Section 2. The prolongation of  
the vector field A =f(x ,  t)O/Ou up to second order is given by 

~ = A + O f .  0__0__~ Of 0 + 02f 0 4 02f 0 02:?" 0 (38) 
Ot OU t Ox Ou x OX 2 OUxx Ot 2 OUn OXOt OUxt 

It follows that 

fi~(u,- Ux~) = of  02f 0 (39) 
Ot Ox 2 

since f satisfies the diffusion equation. 
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7. C O N S E R V E D  CURRENTS OF THE DIFFUSION E Q U A T I O N  

With the help of  the theorem described in Section 6 we are able to 
derive conserved currents with the help of  the infinitesimal generator given 
by equation (25). The diffusion equation can be written as 

js*(dw) = 0 

where 

w = u dxA dy ^ d z + u x d t A  dy A d z+uyd tA  dz A dx+uz dt A dx A dy 

(40) 

(41) 

Consequently, equation (40) is a conservation law. As a consequence it 
follows that 

Q(u) = f 3  u(x, y, z, t) dx dy dz (42) 
dR 

is a conserved quantity. Q is the total amount  of  the diffusing substance. 
Taking the Lie derivative of  o2 with respect to the vector fields given by 
equation (8) we can find further conservation laws. The vector fields X, Y, 
Z, T, V, R12, R23, and R31 do not give new conservation laws. In this case 
we obtain oJ or zero by taking the Lie derivative of  co with respect to these 
vector fields. On the other hand we find a hierarchy of conservation laws 
(and therefore a hierarchy of constants of  motion) when we consider the 
vector fields Gl, 62, (33, and P. 

Consider now the vector field symmetry generators G~ and the differen- 
tial form (the conservation law) ~o. By Lie derivative of  the differential form 
~o with respect to the symmetry generator G~ we find 

x u  
L~ oJ = ---~ dx A dy A d z -  UdC dt A dx A dy 

2 

u uxx'~ UyX 
+ \ - ~ - - - ~ - / a t  A dy Adz - T at A dz A dx (43) 

From this expression it follows that 

Pl(u) = fR xu(x, y, z, t) dx dy dz (44) 
3 

is a conserved quantity. Consequently, for actual calculation of the quantity 
P~ we can insert the initial distribution qb(x,y, z ) =  u(x,y ,  z, t = 0 )  into 
equation (44). For example,  if q> is an even function with respect to each 
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coordinate we find that 

# x$(x, y, z) dx dy dz = 0 (45) 

When we calculate the Lie derivative of  the differential form La to  with 
respect to t~l we find a further conservation law and therefore a constant 
of motion. A straightforward calculation yields that 

~ ( - t+X2~ u(x, y, z, t) dx dy dz (46) Pa(u) = 3 2 4 ] 

is a conserved quantity. Now we can expand this approach up to infinite 
order. P,(u) is given as follows. L e t f ,  be the function 

f , (x ,y ,  z, t ) = ( x - t  a-~-~", l (47) 
\ 2  ox] 

Then P,(u) is given by 

P.(u) = I #  u(x, y, z, t)f.(x, y, z, t) dx dy dz (48) 

For the vector fields G2, G3, and P we also obtain a hierarchy of  conservation 
laws. 

8. NONLINEAR DIFFUSION EQUATIONS AND LINEARIZATION 

Nonlinear diffusion equations arise when we study concentration- 
dependent diffusion. The equation under consideration is then 

Ov 
- d iv(D(v)  grad v) (49) 

Ot 

In this section we study a class of  nonlinear diffusion equations and its 
connection with the linear diffusion equation. The class of  nonlinear 
diffusion equations is given in such a manner that there is a transformation 
(of course nonlinear) which linearizes the nonlinear diffusion equation. In 
the one-dimensional case several authors (Ames, 1965; Kaup, 1980; Bluman 
and Kumei, 1980; Munier et al., 1981 ; Ibragimov and Shabat, t980; Bluman, 
1980) have studied the problem oflinearizing nonlinear diffusion equations. 
In the literature the best known example is the so-called Burgers equation 
(Kaup, 1980) 

Ov 02v Ov 
o t - o x  2 Vax (50) 
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Inserting the nonlinear transformation 

v(x, t ) =  - 2 ~ 0  In u(x, t)~- - 2  (Ou/Ox)(x, t) (51) 
Ox u(x, t) 

into the Burgers equation we find that u satisfies the linear diffusion equation 
0/,g/0t = 02~//0X 2. 

The transformation given by equation (51) is sometimes called a B/ick- 
lund transformation since a derivative of  u appears on the right-hand side. 
The Cauchy initial problem is solved for the linear diffusion equation, i.e., 
find u satisfying 02u/Ox2=Ou/Ot such that u(x, 0 ) =  4~(x). Therefore with 
the help of  a nonlinear transformation we can solve the Cauchy problem 
for the Burgers equation; but the calculation shows that for the Burgers 
equation the initial perturbation must obey a restrictive condition in order 
that the solution exist. The Burgers equation (50) can be written in the form 
of  a conservation law, namely, 

- - + - -  v 2 - o r  = 0  (52) 
Ot Ox Ox/ 

Since the transformation given by (51) is not invertible we are not able to 
find conservation laws of the Burgers equation from conservation laws of 
the linear diffusion equation. 

Let us assume that the nonlinear transformation which linearizes the 
nonlinear diffusion equation is invertible. 

Since solutions and conserved currents of  the linear diffusion equation 
are known we are able to derive solutions and conserved currents of  the 
nonlinear diffusion equations which are associated with the linear diffusion 
equation (1) via nonlinear transformations. In the following we assume that 
the quantities x, y, z, t, u are given so that they are dimensionless. 

Let us now consider the three-dimensional case. First of all we discuss 
two examples. Consider first the nonlinear diffusion equation 

- ~ -  \Ox /  \Oy/  \Oz /  +Ox----5+ay - -54 Oz 2 (53) 

With the help of  the nonlinear transformation 

v(x, y, z, t) = In u(x, y, z, t) (54) 

the nonlinear equation can be tinearized. The transformation is invertible 
and we have u(x, y, z, t) = exp[v(x, y, z, t)]. Consequently, we can write the 
nonlinear equation as a conservation law, namely, 

Z(0e~ 0 (oe~176 o (,,) 
Ot Ox k Ox / - ~ y  \ Oy / Oz k Oz / 
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Thus we can transform solutions, symmetry generators, and conservation 
laws from the linear diffusion equation to the nonlinear diffusion equation. 
Let u~ and u2 be solutions to the linear diffusion equation. Then u~ + u2 is 
also a solution to the linear diffusion equation. Now let v~ and v2 be solutions 
to the nonlinear diffusion (53). We may well ask whether the two solutions 
can be combined so that we find a new solution (so-called nonlinear 
superposition). With the help of  the transformation (54) we can easily find 
the nonlinear superposition. Starting from u~ + u2 = exp(v),  u~ = exp(v0 ,  
and u2=exp(v2) we obtain ln(u~+u2)= v and therefore v =  
ln[exp(vl) + exp(v2)] is a solution to the nonlinear diffusion equation (53). 

Another example of  a nonlinear diffusion equation which can be 
linearized is the following: 

0-7=--; + \ Oy/ .l +~xZ +oy 2-~ Oz 2 
(56) 

The linear diffusion equation can be obtained via the transformation 

v(x, y, z, t) : exp[u(x, y, z, t)] (57) 

Consequently, we can write equation (56) as a conservation law 

0(ln v ) = O  (0 In v~ + O  (0 In v~ + O  (0 In v~ 

Ot O x \  Ox / Oy \ Oy / Ozk-~z  / 
(58) 

The nonlinear superposition of two solutions/-)1 and v2 to the equation (56) 
can be found as described above. Starting from u~ + u2 = In v, u~ = In v~ and 
u2 = In v2 we obtain v = exp(u~ + u2) and therefore v = exp(ln v~ + ln  v2). 
Consequently, v = v~v2. Thus if v~ and v2 are solutions to the equation (56), 
then v = v~ v2 is also a solution to equation (56). Since the nonlinear transfor- 
mation is invertible we are able to find symmetry generators of  the equation 
(56) from the symmetry generators of  the linear diffusion equation [equation 
(8)]. 

Let us now generalize the results given above. Consider a smooth 
function f of  v which is invertible in the region under consideration. Now 
we write 

aT(v) o aT(v) o of(v) o 0f(v) 
- - = 0  

at ox ox oy oy Oz Oz 

By a straightforward calculation it follows that 

s'  : o  
, x o . /  xoyJ 

(59) 

(6o) 
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where the prime denotes the derivative of f with respect to v. Since f is 
invertible, we find that 

dt k~-~x2 + O-~y2 + ~z2) - f7 [ \ ax]  kay]  \~zz] _I = 0  (61) 

The nonlinear diffusion equation (61) can be linearized with the help of 
the function f - l .  Since we know the solutions, symmetry generators, and 
conservation laws of the linear diffusion equation (1) we find with the help 
of the function f and f--1 solutions, symmetry generators and conservation 
laws of the nonlinear diffusion equation (61). 

A natural question is what happens when we also include derivatives 
of v in our transformation. This means the function should depend on u, 
Ux, Uy, U z and therefore we have a Biicklund transformation. The problem 
is that in most cases the function f is not invertible. 

However, the following extension is possible. Let 

Av+f(v)(grad v)2+a(x, t)grad v+b(x,  t)Ov/Ot=O (62) 

where x = ( x l , . . . ,  x,)  r and a = ( a l , . . . ,  an). f, b, and ai are given smooth 
functions. With the help of the transformation 

u = exp f(oOdo~ dE (63) 
v o t~ o 

we obtain the linear partial differential equation 

Au + a(x, t) grad u + b(x, t)Ou/Ot =0  (64) 
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